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Structural Characterization of Compoundness†

Bob Coecke1,2
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We recover the rays in the tensor product of Hilbert spaces within a larger class
of so-called ‘states of compoundness’, structured as a complete lattice with the
‘state of separation’ as its top element. At the base of the construction lies the
assumption that the cause of actuality of a property of one individual entity is
the actuality of a property of the other.

1. INTRODUCTION

Most approaches toward a realistic description of compound—
quantum—systems are based on the recognition of subsystems, imposing
some mathematical universal property as a structural criterion [6, 8, 9, 13,
14, 25, 27]. In this paper we take a different point of view, essentially focusing
on a structural characterization of the interaction between the individual
entities, rather than on the compound system as a whole. More precisely, we
structurize the concept of ‘mutual induction of actuality’ for the ‘individual
entities’ in a compound system, inspired by the existence of an—essentially
unique—representation for compound quantum systems when postulating
that a state transition of one individual entity induces a state transition of
the others [20]. In particular we will consider ‘separation’ as one particular
state of compoundness, and not as a type of ‘entity’ as in Aerts [11] and
Ischi [25], as such avoiding some axiomatic drawbacks that emerge when
taking the latter perspective. Formally, an essential ingredient of the reasoning
can be recuperated from Faure et al. [18], where propagation of states and
properties in maximal deterministic evolutions is studied. As an application
of our way of looking at compoundness we mention a representation for spin
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systems [17, 21]. The mathematical preliminaries to this paper are basic
notions on linear operators, for which we refer to Weidmann [10], and that
of a Galois dual pair, i.e., a couple of isotone maps f : M → N and f *: N →
M satisfying ∀x P M, y P N: x # f *( y) ⇔ f(x) # y, where f preserves existing
joins, f * preserves existing meets, and we have existence and uniqueness of
it for a meet (resp. join)-preserving map between complete lattices [1, 12].

2. COMPOUNDNESS AND ASSIGNMENT OF CAUSES

Let us first recall the general concept of an entity, along the lines of
refs. 5, 11, and 28; we will not go into the details on this and refer for the
most recent overview to Moore [24]. We consider an entity to be a physical
system described by a collection of properties + partially ordered by an—
operationally motivatable—implication relation #, and proves to be a com-
plete lattice [5]. As is discussed in Piron [7] and Moore [24], the meet ∧ can
be treated as a classical conjunction. A property is said to be ‘actual’ if we
get true with certainty when it would be verified in any possible way; a P
+ is stronger (resp. weaker) than b P + iff a # b (resp. b # a); the top
element 1 of the complete lattice can be seen as expressing ‘existence’ of
the entity and the bottom element 0 expresses the ‘absurd’, i.e., what can
never be true. As an example, the property lattice +* of a quantum entity
described in a Hilbert space * is the set of closed subspaces ordered by
inclusion with intersection as meet and closed linear span as join. We will also
systematically use the term ‘individual entity’ when considering identifiable
‘parts’ in a larger system—as such to be seen as a compound system—since
in general, these individual entities do not satisfy the general conception of
what an entity is in the references mentioned above—for a discussion on
this aspect see Coecke [20]. In the presence of interaction between individual
entities, the actuality of a property a2 P +2 of an individual entity S2 might
be due to the actuality of a property a1 P+1 of individual entity S1. In
particular, we will show that all interaction involved in quantum entanglement
can be expressed in this way, and therefore we define a map:

f : +2 → +1: a2 ° “the cause in +1 of the actuality of a2” (1)

This cause of actuality of a2 is the weakest a1 P +1 that assures actuality
of a2: indeed, any b1 P +1 with b1 # a1 then automatically causes actuality
of a2 since it implies a1. Note that existence of such a weakest a1 P +1

follows from the fact that ‘assuring actuality of a2’ precisely defines it as a
property for S1. As an example, when considering two separated individual
entities it is the bottom element 01 P +1 that assures actuality of any a2 P
+2 \{12}, explicitly expressing that no state of +1 assures anything about +2.
On the contrary, the property 11 assures actuality of 12 since we a priori
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assume the existence of both individual entities. When considering meets ∧i

a2,i in +2, due to their significance as a classical conjunction, i e., they can
be read as ‘and’, ∧i f*(a2,i) assures actuality of ∧i a2,i, as such assuring f*
to preserve nonempty meets. Since ∧0⁄ 5 1 and f*(12) 5 11 by assumption
of the existence of both individual entities, it also preserves the empty meet.
Thus, there exists a unique join-preserving Galois dual for f*, namely

f : +1 → +2: a1 ° ∧{a2 P +2.a1 # f*(a2)}

5 min{a2 P +2.a1 # f*(a2)} (2)

From Eq. (2) it follows that f assigns to a property a1 P +1 the strongest
property a2 P +2 of which it assures actuality—the minimum of all a2 P
+P such that a1 # f *(a2)—implicitly implying actuality of all b2 $ a2. Thus,
f expresses exactly induction of actuality of +1 on +2.

Conclusion 1. A ‘state of compoundness for S1 on S2’ is a join-preserving
map f : +1 → +2.

2.1. Structuring States of Compoundness

Denote by 4(+1, +2) the join-preserving maps from +1 to +2 and set
for all { fi}i # 4(+1, +2)

~
i

fi :5 +1 → +2: a ° Vi fi (a) (3)

Equation (3) defines a complete internal operation on Q(+1, +2) since for
{ fi}i # Q(+1, +2): (∧i fi)(∧j aj) 5 ∨ij fi (aj) 5 ∨j (∨i fi)(aj), and one easily
verifies that ∨i fi is the lub of { fi}i in Q(+1, +2).

Conclusion 2. The states of compoundness for S1 to S2 are described by
a complete lattice (4(+1, +2), ∨), inheriting its join from the underlying
property lattice +2 pointwisely.

Analogously, the collection of meet-preserving maps f *: +2 → +1

denoted by Q*(L1, L2) is a meet complete lattice with respect to pointwise
meet denoted as ∧. Note here that the significance of the lattice meet as a
classical conjunction is lifted by the pointwise computed meets to the level
of assignment of temporal causes, as such giving to f * ∧ g* the significance
of ‘f * and g*’. Set L*( f, a2) 5 {a1 P +1.f (a1) # a2} and L( f *, a1) 5 {a2 P
+2.a1 # f *(a2)}. If ∀a1 P +1: f(a1) # g(a1), then [g(a1) # a2 ⇒ f (a1) #
a2] and ∀a2 P +2: L*(g, a2) # L*( f, a2). Thus, ∨L*(g, a2) # ∨L*( f, a2),
yielding ∀a2 P +2: g*(a2) # f *(a2) and g* # f *. Conversely, ∀a2 P +2:
g*(a2) # f *(a2) implies [g*(a2) $ a1 ⇒ f *(a2) $ a1], L(g*, a1) # L( f *, a1),
∧L(g*, a1), $ ∧L( f *, a1), and thus f # g. As such f # g iff g* # f *.
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It follows that (Q*(+1, +2), ∧)op and (Q(+1, +2), ∨) are isomorphic complete
lattices, where op stands for reversal of partial order.

Conclusion 3. The map *: Q(+1, +2) → Q*(+1, +2): f ° f * ‘interprets’
∨i fi , the join of a set of states of compoundness, as ∧i f *i a conjunction of
the corresponding assignments of temporal causes.

2.2. Separation as the Top State of Compoundness

Since we have f *: {+2 \{11} → +1: a2 ° 01; 12 ° 11} in case of
separation, the ‘state of separation’ for S1 on S2 is given by f : {+1 \{02} →
+2: a1 ° 12;01 ° 02} and this is exactly the top element 11,2 of 4(+1, +2);
note that 01 ° 02 is required for any join-preserving map, the bottom being
the empty join. Remark that the bottom element 01,2 of 4(+1, +2) stands for
the ‘absurd state of compoundness’. Indeed, since f : +1 → +2: a1 ° 01 we
have f *: +2 → +1:a2 ° 11, i.e., existence of S1 causes actuality of all
properties of S2, and as such actuality of the absurd property ∧+2 5 02.

2.3. Quantum Entanglement as Atomic States of Compoundness

We will now consider those f P 4(+*1, +*2) that send atoms to atoms
or 02 for +*1 and +*2 the lattices of closed subspaces of Hilbert spaces. The
following result can be found in Faure et al. [18] and is essentially based on
Faure and Frölicher [15, 16] and Piron [3, 5]: Any nontrivial3

f P 4(+*1, +*2) that sends atoms to atoms or 02 induces either a linear or
an antilinear map F: *1 → *2.

Proposition 1. If f P 4(+*1, +*2) sends atoms to atoms or 02, then f is
itself an atom or 01,2.

Proof. Let Kf and Kg be the respective kernels of the linear maps F, G:
*1 → *2 induced by f, g P 4(+*1, +*2) with f , g, and thus, Kg , Kf

and K'
f , K'

g . For c P K'
f \{01} and f P (Kf ù K'

g ) \{01} we have F(c 1
f) 5 F(c) 5 G(c), whereas G(c 1 f) 5 G(c) 1 G(f), forcing G(c) 5
kG(f) for k nonzero. However, then G(kc 2 f) 5 0 although kc 2 f P
K'

g , yielding contradiction except when K'
f 5 01, i.e.,[ f : a1 . 02] 5 01,2. n

For the sake of transparency of the argument we will from now on only
consider finite-dimensional Hilbert spaces. Let *81 be the Hilbert space of
continuous linear functionals on *1, connected to it by the correspondence
*1 → *81: c . ^c.2&. Then the tensor product *81 ^ *2 is isomorphic to

3 I.e., with at least three noncollinear elements in its range. Note that if the image is spanned
by either one or two atoms there is an obvious representation as a linear map, extending the
collection of representations in a natural way, which motivates us to assume a linear representa-
tion on the underlying Hilbert space for any state of compoundness.



Structural Characterization of Compoundness 589

the space of linear operators with indicated domain and codomain—denoted
as B(*1, *2)—by the isomorphism:

*81 ^ *2 → B(*1, *2): Fo
m

i51
ci^ci.2& ^ fiG

. FF{ci}i: *1 → *2: c . o
m

i51
ci^ci.c&fiG (4)

with {ci}i and {fi}i fixed orthonormal bases; note that

|F{ci}i|HS 5 ZZom
i51

ci^ci.2& ^ fiZZ
*8

i^*2

for | 2 |*81^*2 the Hilbert space metric and | 2 |HS the Hilbert–Schmidt norm. Considering

antilinear maps (
m
i51 ci^2.ci&fi, say B8(*1, *2), and reasoning along the same lines,

we obtain *1 ^ *2. As such, we recover the rays of the tensor product of
Hilbert spaces *1 ^ *2 as a special case of our more general class of atomic
states of compoundness, besides the rays *81 ^ *2. Indeed, although *1 ^
*2 and *81 ^ *2 are isomorphic as Hilbert spaces, there rays represent
different states of compoundness.

3. COMPOUNDNESS AS EVOLUTION AND VICE VERSA

Although we were able to use much material from Faure et al. [18]
dealing with the evolution of an entity, we should note that an essential
difference between the two formal developments is due to the fact that
existence of the entity at a certain instance of time in general does not assure
existence in the future when considering evolution. However, imposing a
condition on the ‘type’ of evolution that we consider by ‘requiring preserva-
tion’ makes an illustrative comparison possible, and as such we will proceed.
To fix ideas, identify +1 with the property lattice of a fixed entity at time t1

and +2 as its property lattice at time t2. We can again consider a map f *:
+2 → +1 that assigns to a property that is actual at time t2 the cause of its
actuality at time t1, and the corresponding Galois dual f : +1 → +2 that now
expresses temporal propagation of properties, all of them again structured in
4(+1, +2).

Example 1. A ‘maximal deterministic evolution’ is defined as one where
atoms propagate to atoms or 02—the latter in order to express a domain for
initial states—mirroring atomic states of compoundness.

Example 2. We could define a ‘maximal indeterministic—or minimal
deterministic—evolution’ as one that strictly assures existence at time t2,
yielding the mirror of the state of separation.
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For a more elaborate formal discussion on the connection between
compoundness and evolution we refer to ref. 22 and in particular ref. 26.

4. ON ASSIGNMENT OF PROPER STATES TO
INDIVIDUALIZED ENTITIES

The discussion on evolution was not merely illustrative, but constitutes
an essential ingredient in this section, where we discuss state transitions of
individual entities due to a state of compoundness: in Section 2 we character-
ized entanglement between individual entities in a compound system, but no
consideration of a characterization of individual entities themselves has been
made. Indeed, a description of a compound system consisting of two individ-
ual entities S1 and S2 requires a characterization of these individual entities
themselves besides the states of compoundness f1,2 of S1 on S2 and f2,1 of S2

on S1. However, this requires a more general concept of state than in refs.
5, 11, and 19, and a different name, proper state, has been introduced [20]
to stress this difference. Therefore consider for each individual entity an a
priori set of proper states S and denote by #: 3(S) → + the map that assigns
to any T in 3(S), the powerset of S, the strongest property in + that is
implied by every p P T. As shown in refs. 22 and 23, # canonically induces
a preorder on S by p # c , q ⇔ #({p}) # #({q}). Moreover, the above
requirement that properties propagate with the preservation of join (see also
ref. 4) restricts the—not-necessarily deterministic—state transitions to be
described by a map in

Q#(() 5 { f: 3(() → 3((). f (øT ) 5 øf (T ), f (#(T )) # #( f (T ))} (5)

which proves to be a quantale (Q#, ((), ø, +), i.e., a join-complete lattice
equipped with an additional operation + that distributes over arbitrary joins,
where ø is computed pointwise, and which is in epimorphic—quantale—
correspondence with the ‘quantale’ (Q (+, +), ∨, +) (see above) by

~[2]: Q# (() → Q(+, +): f ° [ f+: #(T ) ° #( f (T ))] (6)

Note that this quantale epimorphism indeed exactly expresses that to any
state transition there corresponds a join-preserving propagation of properties.
We apply all this to the context of this paper:

• For each individual entity S, let C: + → Q# (() be the map that assigns
to any property a P + the—not-necessarily deterministic—state
transition C(a): 3(() → 3(() that S undergoes when actuality of
property a is induced on it by interaction with another individual
entity.
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Clearly this implicitly determines the propagation of properties C+: + →
Q(+, +) by ∨[C(2)] 5 C+(2). We will now discuss C and C+ for +
orthomodular, and more specifically, for the Hilbert space case.

4.1. Ordering of States via ‘Descending’ Induction of Actual
Properties

Proposition 2. If the following conditions are satisfied, then p v q ⇔
[∃a # #({q}): p P C(a)({q})] defines a poset ((, v) that embeds in ((, ## ):

(i) C(a) does not alter proper states of which the strongest actual property
is stronger than a.

(ii) All properties compatible with the induced one that are actual before-
hand remain actual.

(iii) The assignment im(C+) → im(C): C+(a) ° C(a) preserves compo-
sition, with im(2) 5 image.

Proof. Following Piron [5, p. 69, Theorem 4.3], if properties described
by an orthomodular property lattice change in such a way that a property
a P + becomes actual, and such that all properties compatible with a that
were actual beforehand are still actual afterward, then the corresponding
transition of properties is exactly described by the Sasaki projection wq:
+ → +: b ° a∧(b∨a'). Thus, (ii) assures that CL(a) 5 wa. If p P C(a)({q})
for a # #({q}), then #({p}) # #(C(a)({q})) 5 wa (#({q}) # a [the
equality follows from Eq. (6)], we have #({p}) # #({q}) and thus p #c q.
Note that (i) is equivalent to C(a) being identical on all p P ( such that
#({p}) # a, and thus yields reflexivity since it forces the restriction of C(a)
to {T # (.#(T ) # a}, which is the only part of the domain involved in
defining v , to be idempotent. We cannot have p v q and q v p since any
transition C(a)({q}) 5 {p} requires again by (i) that #({p}) Ü a where
#({q}) # a. Following Foulis [2], the maps {wa.a P +} are structured in a
complete lattice isomorphic to + itself when ordered by wa # wa ⇔ wa8 5
wa8wa. Now consider a $ a8; then wa $ wa8 5 wa8wa , i.e., wa8wa only depends
on a8 and not on a. Thus, (iii) yields transitivity since it forces
C(a8)(C(a)({q})) 5 C(a8)({q}), and this independent of a provided that
a $ a8. n

Note that condition (ii) says that actual properties are only altered in a
minimal way. Now consider, under the assumptions of the above proposition,
a chain a1 $ a81 $ . . . in +1 of consecutive strongest actual properties of S1.
By isotonicity of f1,2 we have f1,2(a1) $ f1,2(a81) $ . . . , and thus for {p82} 5
C( f1,2(a81))({p2}) we have f1,2(a1) 5 #({p2}) $ #({p82}) $ . . . for p2 initial,
yielding p2 x p82 x . . . . As such, the relation v expresses evolution of S2

due to mutual induction of actuality as a descending chain of proper states
in (2, with descending strongest actual properties in +2.



592 Coecke

4.2. Proper States for Compound Quantum Systems

At this point it is required to propose a candidate for the sets of proper
states (1 and (2 in the Hilbert space case that allows us to fully recover the
description of compound quantum systems. Let Pai: *i → *i be the orthogo-
nal projector corresponding to wai for i P {1, 2} with ai a closed subspace
of *i and set

5
((i , #i) 5 ({ri: *i → *i.ri is a density operator}, 3((i) → +*i

: {ri} ° {ri (f).f P *i})

Ci (ai) 5 F#i (ri) ' ai: {ri} ° 0⁄ ; #i (ri) '/ ai: {ri} ° H 1
Tr(Pai

riPai
)

Pai
riPaiJG

(7)

One easily verifies that Ci defines state transitions for ((i , #i) that fulfill
Proposition 2 and that the one-dimensional projectors are minimal in ((i ,
v). Moreover, the restriction of Ci (ai) to {T # (i.#i (T ) # ai} maps a
singleton on a singleton or 0⁄ for all ai P +i , i.e., the transitions due to
induction of properties less than the strongest actual one is maximally deter-
ministic. Now, given F P B(*1, *2) representing f1,2 with F† as its adjoint, then

F ° 1F: *1 → *2,
1

Tr(F †F )
F †F : *1 → *1,

1
Tr(FF †)

FF †: *1 → *1, F †:*2 → *12 (8)

uniquely defines a quadruple ( f1,2, r1, r2, f2,1) which exactly yields the quantum
probability structure in the following way: (i) The transition probability for
{ri} ° {r8i } 5 Ci (ai)({ri}) with ai '⁄ #i ({ri}) in a measurement that satisfies
the property ai is Tr(Pairi Pai); (ii) when this happens, say {r1} ° {r81}, this
transition causes a81 5 #1({r81}) to become actual, and consequently causes
a82 5 f1,2 (a81) to become actual, having a transition {r2} ° {r82} 5
C2(a82)({r2}) as a consequence; (iii) this reasoning can proceed inductively,
and stops once we reach the minimal elements of ((2, v). It can then be
verified that the probability for the chains r1 $ r81 $ . . . $ Pc and r2 $
r82 $ . . . $ Pc to have a couple (#1(Pf ), #2(Pf )) as respective outcome
‘states’, which are indeed represented as atoms of the property lattice, is
given by4

4 A proof follows from identification of this construction with the the representation for com-
pound quantum systems in ref. 20: our choice of ((i , #i) and the corresponding quadruples
( f1,2, r1, r2, f2,1) for linear maps F coincide exactly.
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1
|c|2

*1 |f|2
*2|F|2

HS
.^c ^ f. o

i
cici ^ fi&.2 (9)

for F 5 (m
i51 ci^2.ci&fi, and this is indeed the quantum transition probability

in a measurement on a compound system described by (i cici ^ fi P
*i ^ *2. We end by stressing that due to the assignment in (8), the initial
proper states of the compound quantum system are fully encoded in the states
of compoundness, and thus encoded in *1 , ^ *2 via B8 (*1, *2).

5. CONCLUSION

In this paper we proposed an alternative approach toward an understand-
ing of the description of compound quantum systems by essentially focusing
on the interaction of the individual entities within the compound system.
Obviously, much more investigation could be done on a more accurate charac-
terization of quantum entanglement as a special case of the primal considera-
tions made in this paper. Also, an elaboration on the description of compound
systems consisting of more than two entities is worthwhile.
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